±¾ÍøÑ¶£¨Í¨Ñ¶Ô±£ººúÐËÁÖ£©Îª´Ù½øÔÁ¸Û°Ä´óÍåÇøÍ¼ÏóͼÐÎÓëÈ˹¤ÖÇÄÜÁìÓòµÄѧ¿Æ·¢Õ¹ºÍ¿ÆÑ§Ñо¿£¬½øÒ»²½´Ù½ø²úѧÑеÄÉî¶ÈºÏ×÷½»Á÷Ó봴У¬Íƶ¯Õ½ÂÔÐÂÐ˲úÒµµÄÈںϷ¢Õ¹¡£2021 Äê 12 Ô 17 ÈÕ-19 ÈÕ£¬ÓÉÖ麣ÊпÆÑ§¼¼ÊõлáÖ§³Ö£¬ÖйúͼÏóͼÐÎѧѧ»á¡¢¹ã¶«Ê¡Í¼ÏóͼÐÎѧ»á¡¢±±¾©Ê¦·¶´óѧÁªºÏÖ÷°ìµÄ2021ÄêÔÁ¸Û°ÄͼÏóͼÐÎѧÊõ»áÒéôßÈ˹¤ÖÇÄܲúÒµ·¢Õ¹ÂÛ̳ÔÚ±±¾©Ê¦·¶´óѧÖéº£Ô°ÇøË³Àû¾ÙÐУ¬´ó»áÑûÇëÖйú¹¤³ÌԺԺʿÍõ¶÷¶«¡¢Öйú¿ÆÑ§ÔºÔºÊ¿Ðì×Ú±¾µÈ¾Åλ֪Ãûר¼Ò×öÖ÷Ìⱨ¸æ,À´×ÔÔÁ¸Û°Ä´óÍåÇø¡¢È«¹ú¸÷µØµÄ°ÙÓàλר¼ÒѧÕß¡¢ÆóÒµ¼Î±ö¼°²¿·Ö¸ßУ±¾Ë¶²©Ñ§Éú´ú±íµÈ400ÓàÈËÆë¾ÛÖ麣£¬Ñ§ÊõÅöײ£¬Öǻ۽»ÈÚ£¬³É¹û·á˶¡£

¿ªÄ»Ê½ÓÉ´ó»áÖ÷ϯ¡¢±±¾©Ê¦·¶´óѧÈ˹¤ÖÇÄÜѧԺִÐÐÔº³¤Ò¦Á¦Ö÷³Ö¡£Ö麣ÊпÆÑ§¼¼ÊõлáÉç»á×éÖ¯µ³Î¯Êé¼ÇÑîÄ£¬´ó»á³ÌÐòίԱ»áÖ÷ϯ¡¢¹ã¶«Ê¡Í¼ÏóͼÐÎѧ»áÀíʳ¤Ä߽Ⱥ£¬±±¾©Ê¦·¶´óѧ×ÔÈ»¿ÆÑ§¸ßµÈÑо¿ÔºÑ§ÊõίԱ»áÖ÷ÈεÒÔöÈçµÈÈýλ¼Î±ö·Ö±ðΪ¿ªÄ»Ê½Ö´ǡ£




ΪÖúÁ¦Ö麣¼°ÔÁ¸Û°Ä´óÍåÇøÍ¼ÏóͼÐÎÓëÈ˹¤ÖÇÄÜÁìÓò·¢Õ¹£¬°´ÕÕ±±¾©Ê¦·¶´óѧ¡°Ò»ÌåÁ½Òí¡±°ìѧ²¿Ê𣬽ÌÓý²¿ÖÇÄܼ¼ÊõÓë½ÌÓýÓ¦Óù¤³ÌÑо¿ÖÐÐÄ¡¢½ÌÓý²¿ÐéÄâÏÖʵӦÓù¤³ÌÑо¿ÖÐÐÄÂä»§±±¾©Ê¦·¶´óѧÖéº£Ð£Çø£¬½¨Á¢Ö麣»ùµØ¡£»Æ»ª¡¢ÕÔÖ¾ÎÄ¡¢ÎäÖÙ¿Æ¡¢»Æ¾²µÈËÄλÖÐÐĸºÔðÈ˹²Í¬½ÒÅÆ£¬¿ªÄ»Ê½Ö´ǼαöÓë¹þ¶û±õ¹¤Òµ´óѧ½ÌÊÚÐìÓ¡¢±±¾©Ê¦·¶´óѧ-Ïã¸Û½þ»á´óѧÁªºÏ¹ú¼ÊѧԺ¸±Ð£³¤¼Öά¼Î£¬±±¾©Ê¦·¶´óѧ×ÔÈ»¿ÆÑ§¸ßµÈÑо¿Ôº¸±Ôº³¤Áõ¾²Áᣬ¹ã¶«Ê¡Í¼ÏóͼÐÎѧ»á¸±Àíʳ¤½ðÁ¬ÎÄ¡¢±±¾©Àí¹¤´óѧÖ麣ѧԺ¼ÆËã»úѧԺԺ³¤Â·Á¼¸ÕµÈÉĮ̈¼ûÖ¤½ÒÅÆÒÇʽ¡£

ÌØÑû±¨¸æ Ö±»÷Ö÷Ìâ Ç°ÑØÌ½¾¿Í¼ÏóͼÐÎÓëÈ˹¤ÖÇÄÜ
Öйú¹¤³ÌԺԺʿÍõ¶÷¶«¡¢Öйú¿ÆÑ§ÔºÔºÊ¿Ðì×Ú±¾µÈ¾Åλ֪Ãûר¼ÒΪ´ó»á×öÖ÷Ìⱨ¸æ£¬´ó»á³ÌÐòίԱ»áÖ÷ϯ¡¢±±¾©Ê¦·¶´óѧÈ˹¤ÖÇÄÜѧԺ½ÌÊڻƻª£¬´ó»á×é֯ίԱ»áÖ÷ϯ¡¢±±¾©Ê¦·¶´óѧÈ˹¤ÖÇÄÜѧԺ½ÌÊÚÚùϼ·Ö±ðÖ÷³Ö¡£


Öйú¹¤³ÌԺԺʿ¡¢À˳±¼¯ÍÅÊ×ϯ¿ÆÑ§¼ÒÍõ¶÷¶«×÷¡°¼ÆËãÁ¦£¬ÖÇ»Ûʱ´úÉú²úÁ¦¡±ÏßÉÏÖ÷Ìⱨ¸æ¡£ËûÖ¸³ö£¬Î´À´È˹¤ÖÇÄܶԼÆËãµÄÐèÇó½«Õ¼È«Çò¼ÆËãÐèÇóµÄ80%ÒÔÉÏ£¬¶ø³ÐÔØÕâÖÖÐèÇóµÄ¾ÍÊÇÖÇÄܼÆËãÖÐÐÄ¡£¹ú¼ÒÊàŦ½Úµã½¨ÉèÓ¦×öºÃÍøÂç¡¢ÄÜÔ´¡¢ËãÁ¦¡¢Êý¾Ý¡¢Ó¦ÓõÈÒ»Ì廯·¢Õ¹£¬×îÖÕ¹¹½¨³ÉÒÔÊý¾ÝÁ÷Ϊµ¼Ïò µÄÐÂÐÍËãÁ¦ÍøÂç¸ñ¾Ö¡£ËãÁ¦¹©¸øÕý³ÊÏÖ¹©²»Ó¦ÇóÖ®ÊÆ¡£ ¸÷ÖÖÈ˹¤ÖÇÄܳ¡¾°ºÍÊý×Ö»¯ÒµÎñ¼ÓËÙÂ䵨£¬¶Ô¼ÆËãÁ¦ÐèÇóÍúÊ¢¡£¸ÃÈçºÎÃÖ²¹È˹¤ÖÇÄÜËãÁ¦¡°ºè¹µ¡±£¿Íõ¶÷¶«ÔºÊ¿µÄ´ð°¸ÊǼÆËã¼¼ÊõÓë²úÒµÐè¹¹½¨Ð·¢Õ¹¸ñ¾Ö£¬¼ÓËÙ¼ÆËãÏòÖÇËãתÐÍ£¬ÆäÖжàÔªËãÁ¦ÈÚºÏÊǹؼü£¬ËãÁ¦¹©¸ø»ù½¨»¯ÊÇÖ§³Å¡£

Öйú¿ÆÑ§ÔºÔºÊ¿¡¢Î÷°²½»Í¨´óѧÊýѧÓëͳ¼ÆÑ§Ôº½ÌÊÚÐì×Ú±¾×÷¡°ÈçºÎѧϰѧϰ·½·¨ÂÛ¡±ÏßÉÏÖ÷Ìⱨ¸æ¡£ËûÈÏΪ£¬ÒªÏëÕæÕý½â¾öºÃ»úÆ÷ѧϰµÄѧϰÎÊÌ⣬ÐèÒª¸ü¸ß²ãµÄÖ¸µ¼£¬¼´·½·¨ÂÛ¡£ÔÚ±¨¸æÖд´ÐÂÐÔµÄÌá³öʹÓÃÊýѧ¿ò¼ÜÑо¿»úÆ÷ѧϰ×Ô¶¯»¯£¬Ê×ÏȽâÊÍÁËÀûÓ÷½·¨ÂÛµÄÔÒò£¬Öصã̸µ½ÁËÄ£Äâѧϰ·½·¨ÂÛ(SLM)µÄÊýѧģÐÍ£¬ÒÔ¼°ÈçºÎΪʵÏÖ»úÆ÷ѧϰ×Ô¶¯»¯ÌṩģÐÍ£»Æä´Î£¬²ûÊÍÄ£Äâѧϰ·½·¨ÂÛÀíÂÛ£¬²¢½áºÏʵ¼ÊÎÊÌâ·ÖÎöÈçºÎÔÚÌá³öµÄÊýѧ¿ò¼ÜϽøÐÐÓ¦Óã»×îºó£¬¶ÔÄ£Äâѧϰ·½·¨ÂÛµÄÌôÕ½ÒÔ¼°È˹¤ÖÇÄÜδÀ´µÄ·¢Õ¹½øÐÐÁË×ܽáÓëÕ¹Íû¡£

¹ú¼Ò½Ü³öÇàÄê»ù½ð£¨º£Í⣩»ñµÃÕß¡¢Ïã¸ÛÀí¹¤´óѧ½ÌÊڳ³¤ãë×÷¡°Effective Deep Learning via Network Morphism¡±ÏßÉÏÖ÷Ìⱨ¸æ¡£Prof. Chen presented that network morphism is an effective learning scheme capable of morphing a well-trained neural network to a new one with the network function preserved. Current network morphism scheme addresses only basic morphing types at the layer level. In this talk, we address the central problem of network morphism at a higher level: how a convolutional layer can be morphed into an arbitrary module of a neural network. In particular, we abstract a module as a graph with blobs as vertices and convolutional layers as edges. Then, the morphing process can be formulated as a graph transformation problem. We introduce two atomic morphing operations to construct the graphs and classify the modules into two families: simple morphable modules and complex modules. We prove that any module can be morphed from a single convolutional layer. Extensive experiments were carried out to verify the effectiveness of the proposed scheme.

¹ú¼ÊÅ·ÑÇ¿ÆÑ§ÔºÔºÊ¿¡¢½ÌÓý²¿³¤½½²×ù½ÌÊÚ¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðº£Íâ½ÜÇà¡¢»ªÎªÔÆÈ˹¤ÖÇÄÜÁìÓòÊ×ϯ¿ÆÑ§¼ÒÌïÆæ×÷¡°Å̹ÅԤѵÁ·´óÄ£ÐÍ¡±ÏÖ³¡Ö÷Ìⱨ¸æ¡£ËûÈÏΪ£¬È˹¤ÖÇÄÜÕýÔÚ¼ÓËÙ½øÈëǧÐаÙÒµ£¬Í¬Ê±È˹¤ÖÇÄÜÒ²ÔâÓöÁ˺ܶàÌôÕ½£¬±ÈÈçAIÓ¦Óó¡¾°Ë鯬»¯µ¼Öµġ°Ò»¸ö³¡¾°¡¢Ò»¸öÄ£ÐÍ¡±µÄ¶¨ÖÆ»¯¡¢×÷·»Ê½µÄ¿ª·¢£¬ÈçºÎ½«ÐÐҵ֪ʶÓëAI¼¼ÊõÏà½áºÏ£¬ÒÔ¼°¿Í»§¶ÔAI¼¼ÊõÔÚ¹¥»÷¡¢Òþ˽¡¢°²È«·½ÃæµÄ¹ËÂǵȵȡ£ ±¾±¨¸æÖ÷Òª ÊÇÕë¶ÔĿǰ¶¨ÖÆ»¯¡¢×÷·»Ê½µÄ AI ¿ª·¢Ð§Âʵ͡¢³É±¾¸ßµÄÎÊÌ⣬Ìá³öÁË AI ¹¤Òµ»¯¿ª·¢µÄР·¶Ê½£º ԤѵÁ·+΢µ÷Ϊ»ù´¡µÄ»ªÎªÔÆÅ̹ÅԤѵÁ·´óÄ£ÐÍ¡£ Ôڴ˴α¨¸æÖУ¬½«½éÉÜÅ̹Ŵó Ä£ÐÍÔÚ NLP¡¢CV¡¢¶àģ̬¡¢ºÍ¿ÆÑ§¼ÆËãÖеÄÐÐÒµÓ¦ÓÃÓëʵ¼ù×öÒ»¸ö½éÉÜ¡£

¹ã¶«Ê¡½Ü³öÈ˲š¢ÉîÛÚ´óÑ§ÌØÆ¸½ÌÊÚ¡¢IEEE Fellow¡¢¹ã¶«Ê¡ÍøÂçÓëÐÅÏ¢°²È«²úѧÑд´ÐÂÁªÃËÀíʳ¤»Æ¼ÌÎä×÷¡°Í¼Ïñ´Û¸Ä¶¨Î»¡±ÏÖ³¡Ö÷Ìⱨ¸æ¡£ËûÖ¸³ö£¬Ã½Ì壨ͼÏñ¡¢ÒôƵ¡¢ÊÓÆµ£©Ô½À´Ô½¶à±»²ÉÓÃ×÷ΪÊý×ÖÖ¤¾Ý¡£È»¶ø£¬ÓÐÁ˹¦ÄÜÇ¿´óµÄ¶àýÌå±à¼¹¤¾ß£¨ÀýÈçÓÃÓÚͼÏñ±à¼µÄ PhotoShop, ÓÃÓÚÒôƵ±à¼µÄCoolEdit, GoldWave and Adobe Audition£¬ÓÃÓÚÊÓÆµ±à¼µÄ Adobe Premiere£©£¬ÆÕͨÓû§¿ÉÒԺܷ½±ãµØ¶Ô¶àýÌåÄÚÈݽøÐд۸ÄÒÔÉú³ÉαÔìýÌå¶ø²»ÎªÈËÃǵÄÌýÊÓ¾õËù¸ÐÖª¡£AI¼¼ÊõµÄ·¢Õ¹£¬½øÒ»²½Ìá¸ßÁ˶àýÌåÔì¼Ùˮƽ¡£Î±Ôì¶àýÌåµÄÁ÷Ðиø¹ú¼ÒºÍÉç»á´øÀ´Á˺ܴóµÄ°²È«ÎÊÌâ¡£¶àýÌåȡ֤·ÖÎöÖ¼ÔÚʵÏÖ¶Ô¶àýÌåÀ´Ô´ºÍ´Û¸Ä½øÐбæÊ¶ºÍ¶¨Î»¡£±¾±¨¸æÊ×ÏÈ´Ó¶àýÌåȡ֤µÄÑо¿±³¾°¿ªÊ¼£¬½áºÏ±¾ÁìÓò½üÄêµÄÑо¿½øÕ¹ºÍ±¾ÊµÑéÊҵIJ¿·ÖÑо¿¹¤×÷£¬½éÉܶàýÌåȡ֤Ö÷ÒªÑо¿ÄÚÈݺÍһЩÏà¹Ø½øÕ¹£»È»ºóÒÔÒ»¸ö¶àýÌåȡ֤µÄµäÐÍÎÊÌ⡪ͼÏñ´Û¸Ä¶¨Î»£¬Ì½ÌÖͼÏñ´Û¸Ä¶¨Î»Ñо¿ºÍÓ¦ÓÃÃæÁÙµÄÌôÕ½¡£×îºóÒÔÆäʵÑéÊÒÔÚαÔì´Û¸ÄͼÏñ¶¨Î»·½ÃæµÄÒ»¸ö¹¤×÷ΪÀý×Ó£¬½éÉÜÁËÆäÔÚÓ¦¶ÔÕâЩÌôÕ½ÉϵÄһЩ³¢ÊÔÐÔŬÁ¦¡£

½ÌÓý²¿³¤½Ñ§Õß¡¢¹þ¶û±õ¹¤Òµ´óѧ¼ÆËã»úѧ²¿½ÌÊÚÐìÓÂ×÷¡°Èõ¼à¶½Ä¿±ê¼ì²â¡±ÏÖ³¡Ö÷Ìⱨ¸æ¡£ËûÈÏΪ£¬ÒÀÀµÍ¼Ïñ¼¶±êÇ©¶ø·ÇʵÀý¼¶±êÇ©£¨Ä¿±êλÖÃÓëÀà±ê£©½øÐÐÄ£ÐÍѵÁ·µÄÈõ¼à¶½Ä¿±ê¼ì²â¾ßÓÐÊ®·ÖÖØÒªµÄÑо¿ÒâÒåÓë¿ÉÓ¦ÓüÛÖµ¡£ÓÈÆäÊÇÓë³£¹æ¼à¶½Ä¿±ê¼ì²âÏà±È£¬Èõ¼à¶½Ä¿±ê¼ì²âÄ£ÐÍÎÞÐèÄ¿±êλÖõıê×¢£¬Òò¶ø¾ßÓÐÎ޿ɱÈÄâµÄЧÂÊÓÅÊÆ¡£ÁíÒ»·½Ã棬Èõ¼à¶½Ä¿±ê¼ì²â Ò²´æÔÚ¸üÈÝÒ׳öÏÖÄ¿±ê´í©ÒÔ¼°Ä¿±ê¶¨Î»²»×¼È·µÄÎÊÌâ¡£¸Ã±¨¸æ¾ÍÈõ¼à¶½Ä¿±ê¼ì²âµÄ¶¨Òå¡¢¹Ø¼üÎÊÌâ¡¢¾µä·½·¨½øÐнéÉÜ£¬²¢½éÉÜÍŶӻùÓÚ×ÔÊÊӦʵÀýϸ»¯µÈ˼·µÄÈõ¼à¶½Ä¿±ê¼ì²â×îÐÂÑо¿³É¹û¡£

¹ú¼Ò½Ü³öÇàÄê»ù½ð»ñµÃÕß¡¢¹úÎñÔºÌØÊâ½òÌùר¼Ò¡¢»ªÄÏÀí¹¤´óѧ×Ô¶¯»¯¿ÆÑ§Ó빤³ÌѧԺ½ÌÊÚÀîÔ¶Çå×÷¡°ÃæÏòÁÙ´²Ó¦ÓõÄÄÔ»ú½Ó¿Ú¼¼Êõ¡±ÏÖ³¡Ö÷Ìⱨ¸æ¡£ËûÖ¸³ö£¬Í¨¹ýÄÔ»ú½Ó¿Ú£¬ÈËÄÔºÍÍⲿÉ豸֮¼ä¿ÉÒÔÖ±½Ó½øÐн»»¥£¬´Ó¶øÊµÏÖÄÔÖÇÄܺͻúÆ÷ÖÇÄܵÄÈںϣ¬¼´»ìºÏÖÇÄÜ¡£»ìºÏÖÇÄÜÊÇÈ˹¤ÖÇÄÜÒ»ÖÖеÄÐÎ̬ºÍ·½Ïò£¬¾ßÓй㷺µÄÓ¦ÓÃǰ¾°¡£Ìá¸ßÄ¿±ê¼ì²âÐÔÄܺÍʵÏÖ¶àά¿ØÖÆÊÇÄÔ»ú½Ó¿ÚÑо¿µÄÁ½´ó»ù±¾ÎÊÌâ¡£ÎÒÃÇÊ×ÏȽéÉܶàÖÖ¶à ģ̬ÄÔ»ú½»»¥£¬°üÀ¨»ùÓÚSSVEPºÍP300µÄÄÔ»ú½Ó¿Ú£¬»ùÓÚP300ºÍÔ˶¯ÏëÏóµÄÄÔ»ú½Ó¿Ú£¬ÂÖÒÎÄÔ»úÐͬ¿ØÖÆÏµÍ³µÈ£¬ÕâЩÄÔ»ú½Ó¿Ú»òÕß¿ÉÒÔÌá¸ßÄ¿±ê¼ì²âÐÔÄÜ£¬»òÕß¿ÉÒÔʵÏÖ¶àά¿ØÖÆ¡£ÕâЩÄÔ»ú½Ó¿ÚÁ½¸ö·½ÃæµÄÁÙ´²Ó¦ÓãºÒ»ÊÇÓÃÓÚÒâʶÕϰ»¼Õߣ¨ÈçÖ²ÎïÈ˵ȣ©µÄÒâʶ¼ì²â,Êý×ÖÈÏÖª¼ì²â¡¢ÁÙ´²¸¨ÖúÕï¶Ï¼°¿µ¸´Ô¤²â£¬È¡µÃÁËÁ¼ºÃЧ¹û£»¶þÊÇÃæÏòÑÏÖØµÄ¾±×µËðÉ˵ĸßλ½ØÌ±²¡ÈË£¬ÍŶӿª·¢ÁË»·¾³¿ØÖÆÏµÍ³£¬¼¯³ÉÂÖÒΡ¢¼ÒµçºÍ»¤Àí´²ÓÚÒ»Ì壬ʵÏÖÁËÄÔ¿Ø£¬ÓÐЧÌá¸ßÁËÕâЩ²¡È˵ÄÉú»î×ÔÀíÄÜÁ¦¡£

¹ú¼ÒÌØÆ¸×¨¼Ò¡¢±±¾©Ê¦·¶´óѧ-Ïã¸Û½þ»á´óѧÁªºÏ¹ú¼ÊѧԺ¸±Ð£³¤¡¢±±¾©Ê¦·¶´óѧ×ÔÈ»¿ÆÑ§¸ßµÈÑо¿ÔºÈ˹¤ÖÇÄÜÓëδÀ´ÍøÂçÑо¿ÔºÔº³¤¼Öά¼Î×÷¡°ÈË»úÎïÈںϼ°Öǻ۳ÇÊÐÓ¦Óá±ÏÖ³¡Ö÷Ìⱨ¸æ¡£ËûÈÏΪ£¬Öǻ۳ÇÊпռä°üº¬¸÷ÀàÒì¹¹µÄÊý¾ÝÍøÂ磬Éç½»ÍøÂ磬µç×ÓÓëÎïÁªÍø¿Õ¼ä£»ÕâЩ¿Õ¼ä¶ÔÐÅÏ¢±í´ïºÍÌáÈ¡ÐγÉÁ˱ÚÀÝ¡£ÓÃÓÚÖǻ۳ÇÊеÄÈ˹¤ÖÇÄÜÑо¿±ØÐë¿Ë·þÕâЩ±ÚÀÝ¡£±¾Ñݽ²¸ø³öÎÒÃÇ×îÐ嵀 AI Ñо¿£º¼´Öǻ۳ÇÊг¬Ä£Ì¬¿Õ¼äÐÅÏ¢ÌáÈ¡ºÍ¹ØÁªÒÔ¼°ÎïÁªÍø·½ÃæµÄÓ¦Óá£

ÄϷǹú¼Ò¿ÆÑ§ÔºÔºÊ¿¡¢±±¾©Ê¦·¶´óѧ×ÔÈ»¿ÆÑ§¸ßµÈÑо¿ÔºÈ˹¤ÖÇÄÜÓëδÀ´ÍøÂçÑо¿Ôº½ÌÊÚÍõÇì¹ú×÷¡°Machine learning in Presence of Outliers¡±ÏÖ³¡Ö÷Ìⱨ¸æ¡£Prof. Wang presented that the outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank and sparse matrices, and further recast as a semidefinite programming (SDP) problem. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers, and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered ¡°clean¡±' data from the proposed method can give much better parameter estimation compared with that based on the raw data.

·ÖÂÛ̳»î¶¯ ¾Û½¹×¨Ìâ ÉîÈë½»Á÷רҵÁìÓòÈȵãÓëÇ÷ÊÆ
17ÈÕÏÂÎ磬²©Ê¿Ñ§ÊõÂÛ̳»î¶¯¾ÙÐУ¬±±¾©Ê¦·¶´óѧÈ˹¤ÖÇÄÜѧԺ¸±Ôº³¤ÍõÖ¾´ºÖ÷³Ö¡£±±¾©Ê¦·¶´óѧÈ˹¤ÖÇÄÜѧԺִÐÐÔº³¤Ò¦Á¦¼°Ñ§ÔºÌØÑû½ÌÊÚ¡¢Ñ§Ôº±¾Ë¶²©Ñ§Éú´ú±í¼°´ó»áÆäËû²Î»á¼Î±ö¼°²¿·Ö¸ßУʦÉú²Î¼Ó·ÖÂÛ̳»î¶¯¡£±±¾©Ê¦·¶´óѧÈ˹¤ÖÇÄÜѧԺÀîçû¡¢ÀîÇç¡¢Íõ껵ѡ¢Îâå«ÁØ¡¢ÐÁÏÖΰ¡¢ÑîÁÕ¡¢×£Ö¾Ô¶µÈÆßλ²©Ê¿Éú·Ö±ð¾ÍÎÞÖÊÁ¿ÑéÖ¤µÄ·´¹²Ä±ÖÚ°ü»úÖÆ¡¢»ùÓÚÉî²ãÄ£Ð͵Äʱ-¿Õ¹²±äÄÔÍøÂç·ÖÎöËã·¨¡¢»ùÓÚÁã֪ʶÊý¾Ý¿ÉÈ¡»ØÐÔÖ¤Ã÷µÄÎïÁ÷ÁªÃËÁ´¡¢»ùÓÚÊÓ¾õ×¢ÒâÓë×ÔÊÊӦѧϰµÄÒ£¸ÐÓ°Ïñ³¬·Ö±æÂÊ¡¢²»È·¶¨ÐÅϢϵÄÖ±¾õÄ£ºýÈýÖ§¾ö²ßÄ£ÐÍÑо¿¡¢ÌìÎÄÊý¾Ý¶¨±ê¼°ºãÐDzÎÊý¹À¼ÆµÄ»úÆ÷ѧϰ·½·¨Ñо¿¡¢»ùÓÚͼѧϰµÄÄÔ¹¦ÄÜÍøÂ罨ģËã·¨Ñо¿µÈרÌâ»ã±¨Ñо¿Çé¿ö£¬·ÖÂÛ̳¶ÔÓÅÐ㲩ʿÉú½øÐÐÁ˱íÕá£





18ÈÕÏÂÎ磬²úѧÑкÏ×÷½»Á÷Óë´´ÐÂÂÛ̳»î¶¯¾ÙÐУ¬´ó»á×é֯ίԱ»áÖ÷ϯ¡¢±±¾©Ê¦·¶´óѧ×ÔÈ»¿ÆÑ§¸ßµÈÑо¿ÔºÖÇÄܹ¤³ÌÓë½ÌÓýÓ¦ÓÃÑо¿ÖÐÐÄÖ÷ÈÎÕÔÖ¾ÎÄÖ÷³Ö¡£½ÌÓý²¿ÖÇÄܼ¼ÊõÓë½ÌÓýÓ¦Óù¤³ÌÑо¿ÖÐÐĹù¿¡Ææ½ÌÊÚ×÷רÌ⹤×÷±¨¸æ£¬½ÌÓý²¿ÐéÄâÏÖʵӦÓù¤³ÌÑо¿ÖÐÐÄÎäÖٿƽÌÊÚ×÷רÌ⹤×÷±¨¸æ£»ÉÌÌÀ¿Æ¼¼¸ß¼¶Ñо¿Ô±Â¬Óî×÷¡°ÖÇÄÜÊÓ¾õÇý¶¯ÊÓÆµÄÚÈÝÀí½âºÍÉú²ú¡±×¨Ìⱨ¸æ£¬±±¾©°Ù¶ÈÍøÑ¶¿Æ¼¼ÓÐÏÞ¹«Ë¾ÕþÎñ½ÌÓýÊÂÒµ²¿´óÇø¾ÀíʷΡ×÷¡°È˹¤ÖÇÄܼ¼Êõ·¢Õ¹Ç÷ÊÆÓë°Ù¶È¸³ÄܲúÒµ¡±×¨Ìⱨ¸æ£¬»ªÎªÖ麣ÐÂÒ»´úÐÅÏ¢¼¼ÊõÓ¦ÓÃÁªºÏ´´ÐÂÖÐÐÄ×ܾÀíÑîÃ÷×÷¡°öïÅôÕ¹³á£¬¹²´´ÐРҵмÛÖµ¡±×¨Ìⱨ¸æ£¬½ðÖÇάÁªºÏ´´Ê¼ÈËÇüÎĺÆ×÷¡°Êý×ÖÔ±¹¤¼¼ÊõÖúÁ¦Êý×Ö»¯×ªÐ͵ÄÓ¦ÓÃʵ¼ù¡±×¨Ìⱨ¸æ¡£







18ÈÕÏÂÎ磬¹ã¶«Ê¡Í¼ÏóͼÐÎѧ»áÑÐÌÖÂÛ̳ÓÉѧ»áÀíʳ¤Ä߽ȺÖ÷³Ö£¬¹ã¶«Ê¡Í¼ÏóͼÐÎѧ»áÈ«ÌåÀíʲμӷÖÂÛ̳»î¶¯¡£»áÒéÉóÒéÁ˹¤×÷±¨¸æ£¬ÌÖÂÛÁËũҵÊÓ¾õרҵίԱ»á³ï½¨ÊÂÒË£¬ÌÖÂÛÁ˹㶫ʡͼÏóͼÐÎѧ»á»»½ì¹¤×÷¼°ÐÂÒ»½ìÀíÊ»Ṥ×÷¹æ»®¡£


18ÈÕÍí£¬Ö麣ÊмÆËã»úѧ»áÄê»á»î¶¯¾ÙÐУ¬Ö麣ÊмÆËã»úѧ»áÀíʼ°»áÔ±¡¢±±¾©Ê¦·¶´óÑ§ÌØÑû½ÌÊÚ¡¢±±¾©Ê¦·¶´óѧÖ麣·ÖУǧÒÚÌåÓýµÇ¼½Ìʦ´ú±í¡¢Ö麣¼°ÔÁ¸Û°Ä´óÍåÇøÌØÑûÆóÒµ¼Î±ö¼°²¿·Ö¸ßУ±¾Ë¶²©Ñ§Éú´ú±í²Î¼Ó»î¶¯£¬Ñ§»á¸±ÃØÊ鳤ºúÐËÁÖÖ÷³Ö¡£Ñ§»áÀíʳ¤¡¢±±Ê¦´óÖ麣·ÖǧÒÚÌåÓýµÇ¼Ժ³¤ÕÔÖ¾ÎÄÖ´Dz¢×ܽáѧ»á¹¤×÷£¬ÊÚÓèÖ麣ÊÐÈí¼þÐÐҵлᡰÐÅÏ¢¼¼Êõ¿Æ²ú½ÌÈÚºÏʵ¼ù½Ìѧ»ùµØ¡±ÅÆØÒ¡£¸±Àíʳ¤¼æÃØÊ鳤»Æ¾²×÷ѧ»áÄê¶È¹¤×÷±¨¸æ£¬ÎªÑ§»áÐÂÈÎÀíʲÌÕ¼´¨¡¢¸±ÃØÊ鳤ºúÐËÁְ䷢ƸÊé¡£¸±Àíʳ¤Â·Á¼¸Õ¡¢´úÒãΪѧ»á±íÏÖÍ»³öµÄ¸öÈ˰䷢¸öÈ˹±Ï×½±¡£»áÒ黹¾ÍÐÅÏ¢¼¼ÊõÁìÓòÈ˲ÅÅàÑø¡¢¿ÆÑÐÑо¿ºÍÉç»á·þÎñ£¬Íƶ¯Ö麣ITѧÊõ»î¶¯½»Á÷¡¢ÖúÁ¦ITÐÐÒµ·¢Õ¹µÈÊÂÒ˽øÐÐÁËÑÐÌÖ½»Á÷¡£





19ÈÕÉÏÎ磬ÔÚ´ó»á×éί»á°²ÅÅÏ£¬²¿·Ö²Î»á¼Î±ö»¹Ç°ÍùÖе£¨Ö麣£©È˹¤ÖÇÄÜÑо¿Ôº¡¢»ªÎªÖ麣ÐÂÒ»´úÐÅÏ¢¼¼ÊõÓ¦ÓÃÁªºÏ´´ÐÂÖÐÐļ°Öéº£ÔÆÖÞÖÇÄܿƼ¼¹É·ÝÓÐÏÞ¹«Ë¾·ÃÎʽ»Á÷£¬ÖúÁ¦ÔÁ¸Û°ÄÈ˹¤ÖÇÄܲúÒµ·¢Õ¹¡£



¾ÝϤ£¬±¾´ÎѧÊõ»î¶¯ÓÉÖ麣ÊмÆËã»úѧ»á¡¢±±¾©Ê¦·¶´óѧÈ˹¤ÖÇÄÜѧԺ¡¢±±¾©Ê¦·¶´óѧ×ÔÈ»¿ÆÑ§¸ßµÈÑо¿ÔºÖÇÄܹ¤³ÌÓë½ÌÓýÓ¦ÓÃÑо¿ÖÐÐĹ²Í¬³Ð°ì£¬½ÌÓý²¿ÖÇÄܼ¼ÊõÓë½ÌÓýÓ¦Óù¤³ÌÑо¿ÖÐÐÄ¡¢½ÌÓý²¿ÐéÄâÏÖʵӦÓù¤³ÌÑо¿ÖÐÐÄа죬µÃµ½Á˱±¾©Ê¦·¶´óѧ×ÔÈ»¿ÆÑ§¸ßµÈÑо¿Ôº´óÁ¦Ö§³Ö¡£±¾´ÎѧÊõ»î¶¯ÒÔÏßÉÏ+ÏßϵÄÐÎʽͬ²½¾ÙÐУ¬ÀÛ¼Æ2000ÓàÈ˴βÎÓë¡£
£¨ÉãÓ°£ºÖÜÅô¡¢ÐíÔ¾Ó±£©